Estradiol-sensitive projection neurons in the female rat preoptic area
نویسنده
چکیده
Electrical stimulation of the preoptic area (POA) interrupts the lordosis reflex, a combined contraction of back muscles, in response to male mounts and the major receptive component of sexual behavior in female rat in estrus, without interfering with the proceptive component of this behavior or solicitation. Axon-sparing POA lesions with an excitotoxin, on the other hand, enhance lordosis and diminish proceptivity. The POA effect on the reflex is mediated by its estrogen-sensitive projection to the ventral tegmental area (VTA) as shown by the behavioral effect of VTA stimulation as well as by the demonstration of an increased threshold for antidromic activation of POA neurons from the VTA in ovariectomized females treated with estradiol benzoate (EB). EB administration increases the antidromic activation threshold in ovariectomized females and neonatally castrated males, but not in neonatally androgenized females; the EB effect is limited to those that show lordosis in the presence of EB. EB causes behavioral disinhibition of lordosis through an inhibition of POA neurons with axons to the VTA, which eventually innervate medullospinal neurons innervating spinal motoneurons of the back muscle. The EB-induced change in the threshold or the axonal excitability may be a result of EB-dependent induction of BK channels. Recordings from freely moving female rats engaging in sexual interactions revealed separate subpopulations of POA neurons for the receptive and proceptive behaviors. Those POA neurons engaging in the control of proceptivity are EB-sensitive and project to the midbrain locomotor region (MLR). EB thus enhances lordosis by reducing excitatory neural impulses from the POA to the VTA. An augmentation of the POA effect to the MLR may culminate in an increased locomotion that embodies behavioral estrus in the female rat.
منابع مشابه
Intermediary role of kisspeptin in the stimulation of gonadotropin-releasing hormone neurons by estrogen in the preoptic area of sheep brain
Introduction: The role of estrogen in the stimulation of gonadotropin-releasing hormone (GnRH) neurons is clear. These neurons do not express estrogen alpha receptors, so other mediator neurons should be present to transmit the positive feedback effect of estrogen to the GnRH neurons. Kisspeptin neurons have an important role in the stimulation of GnRH neurons, so they can be the mediator of...
متن کاملEstrogen-sensitive neurons with preoptic projection in the lower brain stem of the female rat.
Fifty-one neurons in the ventrolateral part of the medulla oblongata were antidromically activated by electrical stimulation of the suprachiasmatic part of the preoptic area in urethane-anestetized, ovariectomized and estrogen-primed female rats. Two types of antidromic responses were distinguished on the basis of their spike configurations and antidromic spike latencies. One type ("fast spikes...
متن کاملProgesterone treatment increases Fos-immunoreactivity within some progestin receptor-containing neurons in localized regions of female rat forebrain.
In female rats, the sequential release of estradiol and progesterone from the ovaries is required for the expression of sexual behavior during the estrous cycle. Many of the neuronal effects of estradiol and progesterone involve estrogen and progestin receptors. Treatment with a behaviorally-effective dose of estradiol increases Fos expression, suggestive of neuronal response, and subsequent tr...
متن کاملSexual differentiation of the brain: a model for drug-induced alterations of the reproductive system.
The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. ...
متن کاملChanges in alpha-estradiol receptor and progesterone receptor expression in the locus coeruleus and preoptic area throughout the rat estrous cycle.
We have previously shown that the locus coeruleus (LC) is essential for triggering surges of LH. Since LC neurons are responsive to estradiol, which induces progesterone receptor (PR) expression, this study aimed to investigate whether LC neurons express the alpha-estradiol receptor (alphaER) and PR as well as comparing such responses to that observed in the preoptic area (POA). Female rats wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015